

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Code Style Cheat Sheet

Form

	One class per header file.

	Place each data member on its own line.

	Place each ctor-initializer on its own line.

	Create typedefs for primitive types to describe them.

	Return descriptive local variables instead of constants.

	Use long descriptive names instead of abbreviations.

	Use “explicit” for single-argument ctors

	Avoid globals especially objects with static storage duration

	Order class declarations as types, public, protected, private, then data.

	Prefer ‘private’ over ‘protected’

Function

	Minimize external dependencies

	Pass options in the ctor instead of using theConfig

	Use as few other classes as possible

Coding Standards

Coding standards used here gradually evolve and propagate through
code reviews. Some aspects are enforced more strictly than others.

Rules

These rules only apply to our own code. We can’t enforce any sort of
style on the external repositories and libraries we include. The best
guideline is to maintain the standards that are used in those libraries.

	Tab inserts 4 spaces. No tab characters.

	Braces are indented in the Allman style [http://en.wikipedia.org/wiki/Indent_style#Allman_style].

	Modern C++ principles. No naked new or delete.

	Line lengths limited to 80 characters. Exceptions limited to data and tables.

Guidelines

If you want to do something contrary to these guidelines, understand
why you’re doing it. Think, use common sense, and consider that this
your changes will probably need to be maintained long after you’ve
moved on to other projects.

	Use white space and blank lines to guide the eye and keep your intent clear.

	Put private data members at the top of a class, and the 6 public special
members immediately after, in the following order:

	Destructor

	Default constructor

	Copy constructor

	Copy assignment

	Move constructor

	Move assignment

	Don’t over-inline by defining large functions within the class
declaration, not even for template classes.

Formatting

The goal of source code formatting should always be to make things as easy to
read as possible. White space is used to guide the eye so that details are not
overlooked. Blank lines are used to separate code into “paragraphs.”

	Always place a space before and after all binary operators,
especially assignments (operator=).

	The ! operator should be preceded by a space, but not followed by one.

	The ~ operator should be preceded by a space, but not followed by one.

	The ++ and -- operators should have no spaces between the operator and
the operand.

	A space never appears before a comma, and always appears after a comma.

	Don’t put spaces after a parenthesis. A typical member function call might
look like this: foobar (1, 2, 3);

	In general, leave a blank line before an if statement.

	In general, leave a blank line after a closing brace }.

	Do not place code on the same line as any opening or
closing brace.

	Do not write if statements all-on-one-line. The exception to this is when
you’ve got a sequence of similar if statements, and are aligning them all
vertically to highlight their similarities.

	In an if-else statement, if you surround one half of the statement with
braces, you also need to put braces around the other half, to match.

	When writing a pointer type, use this spacing: SomeObject* myObject.
Technically, a more correct spacing would be SomeObject *myObject, but
it makes more sense for the asterisk to be grouped with the type name,
since being a pointer is part of the type, not the variable name. The only
time that this can lead to any problems is when you’re declaring multiple
pointers of the same type in the same statement - which leads on to the next
rule:

	When declaring multiple pointers, never do so in a single statement, e.g.
SomeObject* p1, *p2; - instead, always split them out onto separate lines
and write the type name again, to make it quite clear what’s going on, and
avoid the danger of missing out any vital asterisks.

	The previous point also applies to references, so always put the & next to
the type rather than the variable, e.g. void foo (Thing const& thing). And
don’t put a space on both sides of the * or & - always put a space after
it, but never before it.

	The word const should be placed to the right of the thing that it modifies,
for consistency. For example int const refers to an int which is const.
int const* is a pointer to an int which is const. int *const is a const
pointer to an int.

	Always place a space in between the template angle brackets and the type
name. Template code is already hard enough to read!

rippled Docker Image

	Some info relating to Docker containers can be found here: ../Builds/containers

	Images for building and testing rippled can be found here: thejohnfreeman/rippled-docker [https://github.com/thejohnfreeman/rippled-docker/]

	These images do not have rippled. They have all the tools necessary to build rippled.

Heap profiling of rippled with jemalloc

The jemalloc library provides a good API for doing heap analysis,
including a mechanism to dump a description of the heap from within the
running application via a function call. Details on how to perform this
activity in general, as well as how to acquire the software, are available on
the jemalloc site:
https://github.com/jemalloc/jemalloc/wiki/Use-Case:-Heap-Profiling

jemalloc is acquired separately from rippled, and is not affiliated
with Ripple Labs. If you compile and install jemalloc from the
source release with default options, it will install the library and header
under /usr/local/lib and /usr/local/include, respectively. Heap
profiling has been tested with rippled on a Linux platform. It should
work on platforms on which both rippled and jemalloc are available.

To link rippled with jemalloc, the argument
profile-jemalloc=<jemalloc_dir> is provided after the optional target.
The <jemalloc_dir> argument should be the same as that of the
--prefix parameter passed to the jemalloc configure script when building.

Examples:

Build rippled with jemalloc library under /usr/local/lib and
header under /usr/local/include:

$ scons profile-jemalloc=/usr/local

Build rippled using clang with the jemalloc library under /opt/local/lib
and header under /opt/local/include:

$ scons clang profile-jemalloc=/opt/local

Using the jemalloc library from within the code

The profile-jemalloc parameter enables a macro definition called
PROFILE_JEMALLOC. Include the jemalloc header file as
well as the api call(s) that you wish to make within preprocessor
conditional groups, such as:

In global scope:

#ifdef PROFILE_JEMALLOC
#include <jemalloc/jemalloc.h>
#endif

And later, within a function scope:

#ifdef PROFILE_JEMALLOC
mallctl("prof.dump", NULL, NULL, NULL, 0);
#endif

Fuller descriptions of how to acquire and use jemalloc’s api to do memory
analysis are available at the jemalloc
site. [http://www.canonware.com/jemalloc/]

Linking against the jemalloc library will override
the system’s default malloc() and related functions with jemalloc’s
implementation. This is the case even if the code is not instrumented
to use jemalloc’s specific API.

Building documentation

Dependencies

Install these dependencies:

	Doxygen [http://www.doxygen.nl]: All major platforms have official binary
distributions [http://www.doxygen.nl/download.html#srcbin], or you can
build from source [http://www.doxygen.nl/download.html#srcbin].

	MacOS: We recommend installing via Homebrew: brew install doxygen.
The executable will be installed in /usr/local/bin which is already
in the default PATH.

If you use the official binary distribution, then you’ll need to make
Doxygen available to your command line. You can do this by adding
a symbolic link from /usr/local/bin to the doxygen executable. For
example,

$ ln -s /Applications/Doxygen.app/Contents/Resources/doxygen /usr/local/bin/doxygen

	PlantUML [http://plantuml.com]:

	Install a functioning Java runtime, if you don’t already have one.

	Download plantuml.jar [http://sourceforge.net/projects/plantuml/files/plantuml.jar/download].

	Graphviz [https://www.graphviz.org]:

	Linux: Install from your package manager.

	Windows: Use an official installer [https://graphviz.gitlab.io/_pages/Download/Download_windows.html].

	MacOS: Install via Homebrew: brew install graphviz.

Docker

Instead of installing the above dependencies locally, you can use the official
build environment Docker image, which has all of them installed already.

	Install Docker [https://docs.docker.com/engine/installation/]

	Pull the image:

sudo docker pull rippleci/rippled-ci-builder:2944b78d22db

	Run the image from the project folder:

sudo docker run -v $PWD:/opt/rippled --rm rippleci/rippled-ci-builder:2944b78d22db

Build

There is a docs target in the CMake configuration.

mkdir build
cd build
cmake ..
cmake --build . --target docs

The output will be in build/docs/html.

Consensus and Validation

This section is a work in progress!!

Consensus is the task of reaching agreement within a distributed system in the
presence of faulty or even malicious participants. This document outlines the
XRP Ledger Consensus Algorithm [https://arxiv.org/abs/1802.07242]
as implemented in rippled [https://github.com/ripple/rippled], but
focuses on its utility as a generic consensus algorithm independent of the
detailed mechanics of the Ripple Consensus Ledger. Most notably, the algorithm
does not require fully synchronous communication between all nodes in the
network, or even a fixed network topology, but instead achieves consensus via
collectively trusted subnetworks.

Distributed Agreement

A challenge for distributed systems is reaching agreement on changes in shared
state. For the Ripple network, the shared state is the current ledger–account
information, account balances, order books and other financial data. We will
refer to shared distributed state as a /ledger/ throughout the remainder of this
document.

[image: Ledger Chain]Ledger Chain

As shown above, new ledgers are made by applying a set of transactions to the
prior ledger. For the Ripple network, transactions include payments,
modification of account settings, updates to offers and more.

In a centralized system, generating the next ledger is trivial since there is a
single unique arbiter of which transactions to include and how to apply them to
a ledger. For decentralized systems, participants must resolve disagreements on
the set of transactions to include, the order to apply those transactions, and
even the resulting ledger after applying the transactions. This is even more
difficult when some participants are faulty or malicious.

The Ripple network is a decentralized and trust-full network. Anyone is free
to join and participants are free to choose a subset of peers that are
collectively trusted to not collude in an attempt to defraud the participant.
Leveraging this network of trust, the Ripple algorithm has two main components.

	Consensus in which network participants agree on the transactions to apply
to a prior ledger, based on the positions of their chosen peers.

	Validation in which network participants agree on what ledger was
generated, based on the ledgers generated by chosen peers.

These phases are continually repeated to process transactions submitted to the
network, generating successive ledgers and giving rise to the blockchain ledger
history depicted below. In this diagram, time is flowing to the right, but
links between ledgers point backward to the parent. Also note the alternate
Ledger 2 that was generated by some participants, but which failed validation
and was abandoned.

[image: Block Chain]Block Chain

The remainder of this section describes the Consensus and Validation algorithms
in more detail and is meant as a companion guide to understanding the generic
implementation in rippled. The document does not discuss correctness,
fault-tolerance or liveness properties of the algorithms or the full details of
how they integrate within rippled to support the Ripple Consensus Ledger.

Consensus Overview

Definitions

	The ledger is the shared distributed state. Each ledger has a unique ID to
distinguish it from all other ledgers. During consensus, the previous,
prior or last-closed ledger is the most recent ledger seen by consensus
and is the basis upon which it will build the next ledger.

	A transaction is an instruction for an atomic change in the ledger state. A
unique ID distinguishes a transaction from other transactions.

	A transaction set is a set of transactions under consideration by consensus.
The goal of consensus is to reach agreement on this set. The generic
consensus algorithm does not rely on an ordering of transactions within the
set, nor does it specify how to apply a transaction set to a ledger to
generate a new ledger. A unique ID distinguishes a set of transactions from
all other sets of transactions.

	A node is one of the distributed actors running the consensus algorithm. It
has a unique ID to distinguish it from all other nodes.

	A peer of a node is another node that it has chosen to follow and which it
believes will not collude with other chosen peers. The choice of peers is not
symmetric, since participants can decide on their chosen sets independently.

	A /position/ is the current belief of the next ledger’s transaction set and
close time. Position can refer to the node’s own position or the position of a
peer.

	A proposal is one of a sequence of positions a node shares during consensus.
An initial proposal contains the starting position taken by a node before it
considers any peer positions. If a node subsequently updates its position in
response to its peers, it will issue an updated proposal. A proposal is
uniquely identified by the ID of the proposing node, the ID of the position
taken, the ID of the prior ledger the proposal is for, and the sequence number
of the proposal.

	A dispute is a transaction that is either not part of a node’s position or
not in a peer’s position. During consensus, the node will add or remove
disputed transactions from its position based on that transaction’s support
amongst its peers.

Note that most types have an ID as a lightweight identifier of instances of that
type. Consensus often operates on the IDs directly since the underlying type is
potentially expensive to share over the network. For example, proposal’s only
contain the ID of the position of a peer. Since many peers likely have the same
position, this reduces the need to send the full transaction set multiple times.
Instead, a node can request the transaction set from the network if necessary.

Overview

[image: Consensus Overview]Consensus Overview

The diagram above is an overview of the consensus process from the perspective
of a single participant. Recall that during a single consensus round, a node is
trying to agree with its peers on which transactions to apply to its prior
ledger when generating the next ledger. It also attempts to agree on the
network time when the ledger closed. There are
3 main phases to a consensus round:

	A call to startRound places the node in the Open phase. In this phase,
the node is waiting for transactions to include in its open ledger.

	At some point, the node will Close the open ledger and transition to the
Establish phase. In this phase, the node shares/receives peer proposals on
which transactions should be accepted in the closed ledger.

	At some point, the node determines it has reached consensus with its peers on
which transactions to include. It transitions to the Accept phase. In this
phase, the node works on applying the transactions to the prior ledger to
generate a new closed ledger. Once the new ledger is completed, the node shares
the validated ledger hash with the network and makes a call to startRound to
start the cycle again for the next ledger.

Throughout, a heartbeat timer calls timerEntry at a regular frequency to drive
the process forward. Although the startRound call occurs at arbitrary times
based on when the initial round began and the time it takes to apply
transactions, the transitions from Open to Establish and Establish to
Accept only occur during calls to timerEntry. Similarly, transactions can
arrive at arbitrary times, independent of the heartbeat timer. Transactions
received after the Open to Close transition and not part of peer proposals
won’t be considered until the next consensus round. They are represented above
by the light green triangles.

Peer proposals are issued by a node during a timerEntry call, but since peers
do not synchronize timerEntry calls, they are received by other peers at
arbitrary times. Peer proposals are only considered if received prior to the
Establish to Accept transition, and only if the peer is working on the same
prior ledger. Peer proposals received after consensus is reached will not be
meaningful and are represented above by the circle with the X in it. Only
proposals from chosen peers are considered.

Effective Close Time ### {#effective_close_time}

In addition to agreeing on a transaction set, each consensus round tries to
agree on the time the ledger closed. Each node calculates its own close time
when it closes the open ledger. This exact close time is rounded to the nearest
multiple of the current effective close time resolution. It is this
effective close time that nodes seek to agree on. This allows servers to
derive a common time for a ledger without the need for perfectly synchronized
clocks. As depicted below, the 3 pink arrows represent exact close times from 3
consensus nodes that round to the same effective close time given the current
resolution. The purple arrow represents a peer whose estimate rounds to a
different effective close time given the current resolution.

[image: Effective Close Time]Effective Close Time

The effective close time is part of the node’s position and is shared with peers
in its proposals. Just like the position on the consensus transaction set, a
node will update its close time position in response to its peers’ effective
close time positions. Peers can agree to disagree on the close time, in which
case the effective close time is taken as 1 second past the prior close.

The close time resolution is itself dynamic, decreasing (coarser) resolution in
subsequent consensus rounds if nodes are unable to reach consensus on an
effective close time and increasing (finer) resolution if nodes consistently
reach close time consensus.

Modes

Internally, a node operates under one of the following consensus modes. Either
of the first two modes may be chosen when a consensus round starts.

	Proposing indicates the node is a full-fledged consensus participant. It
takes on positions and sends proposals to its peers.

	Observing indicates the node is a passive consensus participant. It
maintains a position internally, but does not propose that position to its
peers. Instead, it receives peer proposals and updates its position
to track the majority of its peers. This may be preferred if the node is only
being used to track the state of the network or during a start-up phase while
it is still synchronizing with the network.

The other two modes are set internally during the consensus round when the node
believes it is no longer working on the dominant ledger chain based on peer
validations. It checks this on every call to timerEntry.

	Wrong Ledger indicates the node is not working on the correct prior ledger
and does not have it available. It requests that ledger from the network, but
continues to work towards consensus this round while waiting. If it had been
proposing, it will send a special “bowout” proposal to its peers to indicate
its change in mode for the rest of this round. For the duration of the round,
it defers to peer positions for determining the consensus outcome as if it
were just observing.

	Switch Ledger indicates that the node has acquired the correct prior ledger
from the network. Although it now has the correct prior ledger, the fact that
it had the wrong one at some point during this round means it is likely behind
and should defer to peer positions for determining the consensus outcome.

[image: Consensus Modes]Consensus Modes

Once either wrong ledger or switch ledger are reached, the node cannot
return to proposing or observing until the next consensus round. However,
the node could change its view of the correct prior ledger, so going from
switch ledger to wrong ledger and back again is possible.

The distinction between the wrong and switched ledger modes arises because a
ledger’s unique identifier may be known by a node before the ledger itself. This
reflects that fact that the data corresponding to a ledger may be large and take
time to share over the network, whereas the smaller ID could be shared in a peer
validation much more quickly. Distinguishing the two states allows the node to
decide how best to generate the next ledger once it declares consensus.

Phases

As depicted in the overview diagram, consensus is best viewed as a progression
through 3 phases. There are 4 public methods of the generic consensus algorithm
that determine this progression

	startRound begins a consensus round.

	timerEntry is called at a regular frequency (LEDGER_MIN_CLOSE) and is the
only call to consensus that can change the phase from Open to Establish
or Accept.

	peerProposal is called whenever a peer proposal is received and is what
allows a node to update its position in a subsequent timerEntry call.

	gotTxSet is called when a transaction set is received from the network. This
is typically in response to a prior request from the node to acquire the
transaction set corresponding to a disagreeing peer’s position.

The following subsections describe each consensus phase in more detail and what
actions are taken in response to these calls.

Open

The Open phase is a quiescent period to allow transactions to build up in the
node’s open ledger. The duration is a trade-off between latency and throughput.
A shorter window reduces the latency to generating the next ledger, but also
reduces transaction throughput due to fewer transactions accepted into the
ledger.

A call to startRound would forcibly begin the next consensus round, skipping
completion of the current round. This is not expected during normal operation.
Calls to peerProposal or gotTxSet simply store the proposal or transaction
set for use in the coming Establish phase.

A call to timerEntry first checks that the node is working on the correct
prior ledger. If not, it will update the mode and request the correct ledger.
Otherwise, the node checks whether to switch to the Establish phase and close
the ledger.

Ledger Close

Under normal circumstances, the open ledger period ends when one of the following
is true

	if there are transactions in the open ledger and more than LEDGER_MIN_CLOSE
have elapsed. This is the typical behavior.

	if there are no open transactions and a suitably longer idle interval has
elapsed. This increases the opportunity to get some transaction into
the next ledger and avoids doing useless work closing an empty ledger.

	if more than half the number of prior round peers have already closed or finished
this round. This indicates the node is falling behind and needs to catch up.

When closing the ledger, the node takes its initial position based on the
transactions in the open ledger and uses the current time as
its initial close time estimate. If in the proposing mode, the node shares its
initial position with peers. Now that the node has taken a position, it will
consider any peer positions for this round that arrived earlier. The node
generates disputed transactions for each transaction not in common with a peer’s
position. The node also records the vote of each peer for each disputed
transaction.

In the example below, we suppose our node has closed with transactions 1,2 and 3. It creates disputes
for transactions 2,3 and 4, since at least one peer position differs on each.

disputes ##### {#disputes_image}

[image: Disputes]Disputes

Establish

The establish phase is the active period of consensus in which the node
exchanges proposals with peers in an attempt to reach agreement on the consensus
transactions and effective close time.

A call to startRound would forcibly begin the next consensus round, skipping
completion of the current round. This is not expected during normal operation.
Calls to peerProposal or gotTxSet that reflect new positions will generate
disputed transactions for any new disagreements and will update the peer’s vote
for all disputed transactions.

A call to timerEntry first checks that the node is working from the correct
prior ledger. If not, the node will update the mode and request the correct
ledger. Otherwise, the node updates the node’s position and considers whether
to switch to the Accepted phase and declare consensus reached. However, at
least LEDGER_MIN_CONSENSUS time must have elapsed before doing either. This
allows peers an opportunity to take an initial position and share it.

Update Position

In order to achieve consensus, the node is looking for a transaction set that is
supported by a super-majority of peers. The node works towards this set by
adding or removing disputed transactions from its position based on an
increasing threshold for inclusion.

[image: Threshold]Threshold

By starting with a lower threshold, a node initially allows a wide set of
transactions into its position. If the establish round continues and the node is
“stuck”, a higher threshold can focus on accepting transactions with the most
support. The constants that define the thresholds and durations at which the
thresholds change are given by AV_XXX_CONSENSUS_PCT and
AV_XXX_CONSENSUS_TIME respectively, where XXX is INIT,MID,LATE and
STUCK. The effective close time position is updated using the same
thresholds.

Given the example disputes above and an initial threshold
of 50%, our node would retain its position since transaction 1 was not in
dispute and transactions 2 and 3 have 75% support. Since its position did not
change, it would not need to send a new proposal to peers. Peer C would not
change either. Peer A would add transaction 3 to its position and Peer B would
remove transaction 4 from its position; both would then send an updated
position.

Conversely, if the diagram reflected a later call to =timerEntry= that occurs in
the stuck region with a threshold of say 95%, our node would remove transactions
2 and 3 from its candidate set and send an updated position. Likewise, all the
other peers would end up with only transaction 1 in their position.

Lastly, if our node were not in the proposing mode, it would not include its own
vote and just take the majority (>50%) position of its peers. In this example,
our node would maintain its position of transactions 1, 2 and 3.

Checking Consensus

After updating its position, the node checks for supermajority agreement with
its peers on its current position. This agreement is of the exact transaction
set, not just the support of individual transactions. That is, if our position
is a subset of a peer’s position, that counts as a disagreement. Also recall
that effective close time agreement allows a supermajority of participants
agreeing to disagree.

Consensus is declared when the following 3 clauses are true:

	LEDGER_MIN_CONSENSUS time has elapsed in the establish phase

	At least 75% of the prior round proposers have proposed OR this establish
phase is LEDGER_MIN_CONSENSUS longer than the last round’s establish phase

	minimumConsensusPercentage of ourself and our peers share the same position

The middle condition ensures slower peers have a chance to share positions, but
prevents waiting too long on peers that have disconnected. Additionally, a node
can declare that consensus has moved on if minimumConsensusPercentage peers
have sent validations and moved on to the next ledger. This outcome indicates
the node has fallen behind its peers and needs to catch up.

If a node is not proposing, it does not include its own position when
calculating the percent of agreeing participants but otherwise follows the above
logic.

Accepting Consensus

Once consensus is reached (or moved on), the node switches to the Accept phase
and signals to the implementing code that the round is complete. That code is
responsible for using the consensus transaction set to generate the next ledger
and calling startRound to begin the next round. The implementation has total
freedom on ordering transactions, deciding what to do if consensus moved on,
determining whether to retry or abandon local transactions that did not make the
consensus set and updating any internal state based on the consensus progress.

Accept

The Accept phase is the terminal phase of the consensus algorithm. Calls to
timerEntry, peerProposal and gotTxSet will not change the internal
consensus state while in the accept phase. The expectation is that the
application specific code is working to generate the new ledger based on the
consensus outcome. Once complete, that code should make a call to startRound
to kick off the next consensus round. The startRound call includes the new
prior ledger, prior ledger ID and whether the round should begin in the
proposing or observing mode. After setting some initial state, the phase
transitions to Open. The node will also check if the provided prior ledger
and ID are correct, updating the mode and requesting the proper ledger from the
network if necessary.

Consensus Type Requirements

The consensus type requirements are given below as minimal implementation stubs.
Actual implementations would augment these stubs with members appropriate for
managing the details of transactions and ledgers within the larger application
framework.

Transaction

The transaction type Tx encapsulates a single transaction under consideration
by consensus.

struct Tx
{
 using ID = ...;
 ID const & id() const;

 //... implementation specific
};

Transaction Set

The transaction set type TxSet represents a set of Txs that are collectively
under consideration by consensus. A TxSet can be compared against other TxSets
(typically from peers) and can be modified to add or remove transactions via
the mutable subtype.

struct TxSet
{
 using Tx = Tx;
 using ID = ...;

 ID const & id() const;

 bool exists(Tx::ID const &) const;
 Tx const * find(Tx::ID const &) const ;

 // Return set of transactions that are not common with another set
 // Bool in map is true if in our set, false if in other
 std::map<Tx::ID, bool> compare(TxSet const & other) const;

 // A mutable view that allows changing transactions in the set
 struct MutableTxSet
 {
 MutableTxSet(TxSet const &);
 bool insert(Tx const &);
 bool erase(Tx::ID const &);
 };

 // Construct from a mutable view.
 TxSet(MutableTxSet const &);

 // Alternatively, if the TxSet is itself mutable
 // just alias MutableTxSet = TxSet

 //... implementation specific
};

Ledger

The Ledger type represents the state shared amongst the
distributed participants. Notice that the details of how the next ledger is
generated from the prior ledger and the consensus accepted transaction set is
not part of the interface. Within the generic code, this type is primarily used
to know that peers are working on the same tip of the ledger chain and to
provide some basic timing data for consensus.

struct Ledger
{
 using ID = ...;

 using Seq = //std::uint32_t?...;

 ID const & id() const;

 // Sequence number that is 1 more than the parent ledger's seq()
 Seq seq() const;

 // Whether the ledger's close time was a non-trivial consensus result
 bool closeAgree() const;

 // The close time resolution used in determining the close time
 NetClock::duration closeTimeResolution() const;

 // The (effective) close time, based on the closeTimeResolution
 NetClock::time_point closeTime() const;

 // The parent ledger's close time
 NetClock::time_point parentCloseTime() const;

 Json::Value getJson() const;

 //... implementation specific
};

PeerProposal

The PeerProposal type represents the signed position taken
by a peer during consensus. The only type requirement is owning an instance of a
generic ConsensusProposal.

// Represents our proposed position or a peer's proposed position
// and is provided with the generic code
template <class NodeID_t, class LedgerID_t, class Position_t> class ConsensusProposal;

struct PeerPosition
{
 ConsensusProposal<
 NodeID_t,
 typename Ledger::ID,
 typename TxSet::ID> const &
 proposal() const;

 // ... implementation specific
};

Generic Consensus Interface

The generic Consensus relies on Adaptor template class to implement a set
of helper functions that plug the consensus algorithm into a specific application.
The Adaptor class also defines the types above needed by the algorithm. Below
are excerpts of the generic consensus implementation and of helper types that will
interact with the concrete implementing class.

// Represents a transction under dispute this round
template <class Tx_t, class NodeID_t> class DisputedTx;

// Represents how the node participates in Consensus this round
enum class ConsensusMode { proposing, observing, wrongLedger, switchedLedger};

// Measure duration of phases of consensus
class ConsensusTimer
{
public:
 std::chrono::milliseconds read() const;
 // details omitted ...
};

// Initial ledger close times, not rounded by closeTimeResolution
// Used to gauge degree of synchronization between a node and its peers
struct ConsensusCloseTimes
{
 std::map<NetClock::time_point, int> peers;
 NetClock::time_point self;
};

// Encapsulates the result of consensus.
template <class Adaptor>
struct ConsensusResult
{
 //! The set of transactions consensus agrees go in the ledger
 Adaptor::TxSet_t set;

 //! Our proposed position on transactions/close time
 ConsensusProposal<...> position;

 //! Transactions which are under dispute with our peers
 hash_map<Adaptor::Tx_t::ID, DisputedTx<...>> disputes;

 // Set of TxSet ids we have already compared/created disputes
 hash_set<typename Adaptor::TxSet_t::ID> compares;

 // Measures the duration of the establish phase for this consensus round
 ConsensusTimer roundTime;

 // Indicates state in which consensus ended. Once in the accept phase
 // will be either Yes or MovedOn
 ConsensusState state = ConsensusState::No;
};

template <class Adaptor>
class Consensus
{
public:
 Consensus(clock_type, Adaptor &, beast::journal);

 // Kick-off the next round of consensus.
 void startRound(
 NetClock::time_point const& now,
 typename Ledger_t::ID const& prevLedgerID,
 Ledger_t const& prevLedger,
 bool proposing);

 // Call periodically to drive consensus forward.
 void timerEntry(NetClock::time_point const& now);

 // A peer has proposed a new position, adjust our tracking. Return true if the proposal
 // was used.
 bool peerProposal(NetClock::time_point const& now, Proposal_t const& newProposal);

 // Process a transaction set acquired from the network
 void gotTxSet(NetClock::time_point const& now, TxSet_t const& txSet);

 // ... details
};

Adapting Generic Consensus

The stub below shows the set of callback/helper functions required in the implementing class.

struct Adaptor
{
 using Ledger_t = Ledger;
 using TxSet_t = TxSet;
 using PeerProposal_t = PeerProposal;
 using NodeID_t = ...; // Integer-like std::uint32_t to uniquely identify a node

 // Attempt to acquire a specific ledger from the network.
 boost::optional<Ledger> acquireLedger(Ledger::ID const & ledgerID);

 // Acquire the transaction set associated with a proposed position.
 boost::optional<TxSet> acquireTxSet(TxSet::ID const & setID);

 // Whether any transactions are in the open ledger
 bool hasOpenTransactions() const;

 // Number of proposers that have validated the given ledger
 std::size_t proposersValidated(Ledger::ID const & prevLedger) const;

 // Number of proposers that have validated a ledger descended from the
 // given ledger
 std::size_t proposersFinished(Ledger::ID const & prevLedger) const;

 // Return the ID of the last closed (and validated) ledger that the
 // application thinks consensus should use as the prior ledger.
 Ledger::ID getPrevLedger(Ledger::ID const & prevLedgerID,
 Ledger const & prevLedger,
 ConsensusMode mode);

 // Called when consensus operating mode changes
 void onModeChange(ConsensuMode before, ConsensusMode after);

 // Called when ledger closes. Implementation should generate an initial Result
 // with position based on the current open ledger's transactions.
 ConsensusResult onClose(Ledger const &, Ledger const & prev, ConsensusMode mode);

 // Called when ledger is accepted by consensus
 void onAccept(ConsensusResult const & result,
 RCLCxLedger const & prevLedger,
 NetClock::duration closeResolution,
 ConsensusCloseTimes const & rawCloseTimes,
 ConsensusMode const & mode);

 // Propose the position to peers.
 void propose(ConsensusProposal<...> const & pos);

 // Share a received peer proposal with other peers.
 void share(PeerPosition_t const & pos);

 // Share a disputed transaction with peers
 void share(TxSet::Tx const & tx);

 // Share given transaction set with peers
 void share(TxSet const &s);

 //... implementation specific
};

The implementing class hides many details of the peer communication
model from the generic code.

	The share member functions are responsible for sharing the given type with a
node’s peers, but are agnostic to the mechanism. Ideally, messages are delivered
faster than LEDGER_GRANULARITY.

	The generic code does not specify how transactions are submitted by clients,
propagated through the network or stored in the open ledger. Indeed, the open
ledger is only conceptual from the perspective of the generic code—the
initial position and transaction set are opaquely generated in a
Consensus::Result instance returned from the onClose callback.

	The calls to acquireLedger and acquireTxSet only have non-trivial return
if the ledger or transaction set of interest is available. The implementing
class is free to block while acquiring, or return the empty option while
servicing the request asynchronously. Due to legacy reasons, the two calls
are not symmetric. acquireTxSet requires the host application to call
gotTxSet when an asynchronous acquire completes. Conversely,
acquireLedger will be called again later by the consensus code if it still
desires the ledger with the hope that the asynchronous acquisition is
complete.

Validation

Coming Soon!

Negative UNL Engineering Spec

The Problem Statement

The moment-to-moment health of the XRP Ledger network depends on the health and
connectivity of a small number of computers (nodes). The most important nodes
are validators, specifically ones listed on the unique node list
(UNL). Ripple publishes a recommended UNL that most
network nodes use to determine which peers in the network are trusted. Although
most validators use the same list, they are not required to. The XRP Ledger
network progresses to the next ledger when enough validators reach agreement
(above the minimum quorum of 80%) about what transactions to include in the next
ledger.

As an example, if there are 10 validators on the UNL, at least 8 validators have
to agree with the latest ledger for it to become validated. But what if enough
of those validators are offline to drop the network below the 80% quorum? The
XRP Ledger network favors safety/correctness over advancing the ledger. Which
means if enough validators are offline, the network will not be able to validate
ledgers.

Unfortunately validators can go offline at any time for many different reasons.
Power outages, network connectivity issues, and hardware failures are just a few
scenarios where a validator would appear “offline”. Given that most of these
events are temporary, it would make sense to temporarily remove that validator
from the UNL. But the UNL is updated infrequently and not every node uses the
same UNL. So instead of removing the unreliable validator from the Ripple
recommended UNL, we can create a second negative UNL which is stored directly on
the ledger (so the entire network has the same view). This will help the network
see which validators are currently unreliable, and adjust their quorum
calculation accordingly.

Improving the liveness of the network is the main motivation for the negative UNL.

Targeted Faults

In order to determine which validators are unreliable, we need clearly define
what kind of faults to measure and analyze. We want to deal with the faults we
frequently observe in the production network. Hence we will only monitor for
validators that do not reliably respond to network messages or send out
validations disagreeing with the locally generated validations. We will not
target other byzantine faults.

To track whether or not a validator is responding to the network, we could
monitor them with a “heartbeat” protocol. Instead of creating a new heartbeat
protocol, we can leverage some existing protocol messages to mimic the
heartbeat. We picked validation messages because validators should send one and
only one validation message per ledger. In addition, we only count the
validation messages that agree with the local node’s validations.

With the negative UNL, the network could keep making forward progress safely
even if the number of remaining validators gets to 60%. Say we have a network
with 10 validators on the UNL and everything is operating correctly. The quorum
required for this network would be 8 (80% of 10). When validators fail, the
quorum required would be as low as 6 (60% of 10), which is the absolute
minimum quorum. We need the absolute minimum quorum to be strictly greater
than 50% of the original UNL so that there cannot be two partitions of
well-behaved nodes headed in different directions. We arbitrarily choose 60% as
the minimum quorum to give a margin of safety.

Consider these events in the absence of negative UNL:

	1:00pm - validator1 fails, votes vs. quorum: 9 >= 8, we have quorum

	3:00pm - validator2 fails, votes vs. quorum: 8 >= 8, we have quorum

	5:00pm - validator3 fails, votes vs. quorum: 7 < 8, we don’t have quorum

	network cannot validate new ledgers with 3 failed validators

We’re below 80% agreement, so new ledgers cannot be validated. This is how the
XRP Ledger operates today, but if the negative UNL was enabled, the events would
happen as follows. (Please note that the events below are from a simplified
version of our protocol.)

	1:00pm - validator1 fails, votes vs. quorum: 9 >= 8, we have quorum

	1:40pm - network adds validator1 to negative UNL, quorum changes to ceil(9 * 0.8), or 8

	3:00pm - validator2 fails, votes vs. quorum: 8 >= 8, we have quorum

	3:40pm - network adds validator2 to negative UNL, quorum changes to ceil(8 * 0.8), or 7

	5:00pm - validator3 fails, votes vs. quorum: 7 >= 7, we have quorum

	5:40pm - network adds validator3 to negative UNL, quorum changes to ceil(7 * 0.8), or 6

	7:00pm - validator4 fails, votes vs. quorum: 6 >= 6, we have quorum

	network can still validate new ledgers with 4 failed validators

External Interactions

Message Format Changes

This proposal will:

	add a new pseudo-transaction type

	add the negative UNL to the ledger data structure.

Any tools or systems that rely on the format of this data will have to be
updated.

Amendment

This feature will need an amendment to activate.

Design

This section discusses the following topics about the Negative UNL design:

	Negative UNL protocol overview

	Validator reliability measurement

	Format Changes

	Negative UNL maintenance

	Quorum size calculation

	Filter validation messages

	High level sequence diagram of code
changes

Negative UNL Protocol Overview

Every ledger stores a list of zero or more unreliable validators. Updates to the
list must be approved by the validators using the consensus mechanism that
validators use to agree on the set of transactions. The list is used only when
checking if a ledger is fully validated. If a validator V is in the list, nodes
with V in their UNL adjust the quorum and V’s validation message is not counted
when verifying if a ledger is fully validated. V’s flow of messages and network
interactions, however, will remain the same.

We define the effective UNL = original UNL - negative UNL, and the
effective quorum as the quorum of the effective UNL. And we set
effective quorum = Ceiling(80% * effective UNL).

Validator Reliability Measurement

A node only measures the reliability of validators on its own UNL, and only
proposes based on local observations. There are many metrics that a node can
measure about its validators, but we have chosen ledger validation messages.
This is because every validator shall send one and only one signed validation
message per ledger. This keeps the measurement simple and removes
timing/clock-sync issues. A node will measure the percentage of agreeing
validation messages (PAV) received from each validator on the node’s UNL. Note
that the node will only count the validation messages that agree with its own
validations.

We define the PAV as the Percentage of Agreed Validation
messages received for the last N ledgers, where N = 256 by default.

When the PAV drops below the low-water mark, the validator is considered
unreliable, and is a candidate to be disabled by being added to the negative
UNL. A validator must have a PAV higher than the high-water mark to be
re-enabled. The validator is re-enabled by removing it from the negative UNL. In
the implementation, we plan to set the low-water mark as 50% and the high-water
mark as 80%.

Format Changes

The negative UNL component in a ledger contains three fields.

	NegativeUNL: The current negative UNL, a list of unreliable validators.

	ToDisable: The validator to be added to the negative UNL on the next
flag ledger.

	ToReEnable: The validator to be removed from the negative UNL on the
next flag ledger.

All three fields are optional. When the ToReEnable field exists, the
NegativeUNL field cannot be empty.

A new pseudo-transaction, UNLModify, is added. It has three fields

	Disabling: A flag indicating whether the modification is to disable or
to re-enable a validator.

	Seq: The ledger sequence number.

	Validator: The validator to be disabled or re-enabled.

There would be at most one disable UNLModify and one re-enable UNLModify
transaction per flag ledger. The full machinery is described further on.

Negative UNL Maintenance

The negative UNL can only be modified on the flag ledgers. If a validator’s
reliability status changes, it takes two flag ledgers to modify the negative
UNL. Let’s see an example of the algorithm:

	Ledger seq = 100: A validator V goes offline.

	Ledger seq = 256: This is a flag ledger, and V’s reliability measurement PAV
is lower than the low-water mark. Other validators add UNLModify
pseudo-transactions {true, 256, V} to the transaction set which goes through
the consensus. Then the pseudo-transaction is applied to the negative UNL
ledger component by setting ToDisable = V.

	Ledger seq = 257 ~ 511: The negative UNL ledger component is copied from the
parent ledger.

	Ledger seq=512: This is a flag ledger, and the negative UNL is updated
NegativeUNL = NegativeUNL + ToDisable.

The negative UNL may have up to MaxNegativeListed = floor(original UNL * 25%)
validators. The 25% is because of 75% * 80% = 60%, where 75% = 100% - 25%, 80%
is the quorum of the effective UNL, and 60% is the absolute minimum quorum of
the original UNL. Adding more than 25% validators to the negative UNL does not
improve the liveness of the network, because adding more validators to the
negative UNL cannot lower the effective quorum.

The following is the detailed algorithm:

	If the ledger seq = x is a flag ledger

	Compute NegativeUNL = NegativeUNL + ToDisable - ToReEnable if they
exist in the parent ledger

	Try to find a candidate to disable if sizeof NegativeUNL < MaxNegativeListed

	Find a validator V that has a PAV lower than the low-water
mark, but is not in NegativeUNL.

	If two or more are found, their public keys are XORed with the hash
of the parent ledger and the one with the lowest XOR result is chosen.

	If V is found, create a UNLModify pseudo-transaction
TxDisableValidator = {true, x, V}

	Try to find a candidate to re-enable if sizeof NegativeUNL > 0:

	Find a validator U that is in NegativeUNL and has a PAV higher
than the high-water mark.

	If U is not found, try to find one in NegativeUNL but not in the
local UNL.

	If two or more are found, their public keys are XORed with the hash
of the parent ledger and the one with the lowest XOR result is chosen.

	If U is found, create a UNLModify pseudo-transaction
TxReEnableValidator = {false, x, U}

	If any UNLModify pseudo-transactions are created, add them to the
transaction set. The transaction set goes through the consensus algorithm.

	If have enough support, the UNLModify pseudo-transactions remain in the
transaction set agreed by the validators. Then the pseudo-transactions are
applied to the ledger:

	If have TxDisableValidator, set ToDisable=TxDisableValidator.V.
Else clear ToDisable.

	If have TxReEnableValidator, set
ToReEnable=TxReEnableValidator.U. Else clear ToReEnable.

	Else (not a flag ledger)

	Copy the negative UNL ledger component from the parent ledger

The negative UNL is stored on each ledger because we don’t know when a validator
may reconnect to the network. If the negative UNL was stored only on every flag
ledger, then a new validator would have to wait until it acquires the latest
flag ledger to know the negative UNL. So any new ledgers created that are not
flag ledgers copy the negative UNL from the parent ledger.

Note that when we have a validator to disable and a validator to re-enable at
the same flag ledger, we create two separate UNLModify pseudo-transactions. We
want either one or the other or both to make it into the ledger on their own
merits.

Readers may have noticed that we defined several rules of creating the
UNLModify pseudo-transactions but did not describe how to enforce the rules.
The rules are actually enforced by the existing consensus algorithm. Unless
enough validators propose the same pseudo-transaction it will not be included in
the transaction set of the ledger.

Quorum Size Calculation

The effective quorum is 80% of the effective UNL. Note that because at most 25%
of the original UNL can be on the negative UNL, the quorum should not be lower
than the absolute minimum quorum (i.e. 60%) of the original UNL. However,
considering that different nodes may have different UNLs, to be safe we compute
quorum = Ceiling(max(60% * original UNL, 80% * effective UNL)).

Filter Validation Messages

If a validator V is in the negative UNL, it still participates in consensus
sessions in the same way, i.e. V still follows the protocol and publishes
proposal and validation messages. The messages from V are still stored the same
way by everyone, used to calculate the new PAV for V, and could be used in
future consensus sessions if needed. However V’s ledger validation message is
not counted when checking if the ledger is fully validated.

High Level Sequence Diagram of Code Changes

The diagram below is the sequence of one round of consensus. Classes and
components with non-trivial changes are colored green.

	The ValidatorList class is modified to compute the quorum of the effective
UNL.

	The Validations class provides an interface for querying the validation
messages from trusted validators.

	The ConsensusAdaptor component:

	The RCLConsensus::Adaptor class is modified for creating UNLModify
Pseudo-Transactions.

	The Change class is modified for applying UNLModify
Pseudo-Transactions.

	The Ledger class is modified for creating and adjusting the negative UNL
ledger component.

	The LedgerMaster class is modified for filtering out validation messages
from negative UNL validators when verifying if a ledger is fully
validated.

[image: Negative UNL Changes]Sequence diagram

Roads Not Taken

Use a Mechanism Like Fee Voting to Process UNLModify Pseudo-Transactions

The previous version of the negative UNL specification used the same mechanism
as the fee voting [https://xrpl.org/fee-voting.html#voting-process.] for
creating the negative UNL, and used the negative UNL as soon as the ledger was
fully validated. However the timing of fully validation can differ among nodes,
so different negative UNLs could be used, resulting in different effective UNLs
and different quorums for the same ledger. As a result, the network’s safety is
impacted.

This updated version does not impact safety though operates a bit more slowly.
The negative UNL modifications in the UNLModify pseudo-transaction approved by
the consensus will take effect at the next flag ledger. The extra time of the
256 ledgers should be enough for nodes to be in sync of the negative UNL
modifications.

Use an Expiration Approach to Re-enable Validators

After a validator disabled by the negative UNL becomes reliable, other
validators explicitly vote for re-enabling it. An alternative approach to
re-enable a validator is the expiration approach, which was considered in the
previous version of the specification. In the expiration approach, every entry
in the negative UNL has a fixed expiration time. One flag ledger interval was
chosen as the expiration interval. Once expired, the other validators must
continue voting to keep the unreliable validator on the negative UNL. The
advantage of this approach is its simplicity. But it has a requirement. The
negative UNL protocol must be able to vote multiple unreliable validators to be
disabled at the same flag ledger. In this version of the specification, however,
only one unreliable validator can be disabled at a flag ledger. So the
expiration approach cannot be simply applied.

Validator Reliability Measurement and Flag Ledger Frequency

If the ledger time is about 4.5 seconds and the low-water mark is 50%, then in
the worst case, it takes 48 minutes ((0.5 * 256 + 256 + 256) * 4.5 / 60 = 48)
to put an offline validator on the negative UNL. We considered lowering the flag
ledger frequency so that the negative UNL can be more responsive. We also
considered decoupling the reliability measurement and flag ledger frequency to
be more flexible. In practice, however, their benefits are not clear.

New Attack Vectors

A group of malicious validators may try to frame a reliable validator and put it
on the negative UNL. But they cannot succeed. Because:

	A reliable validator sends a signed validation message every ledger. A
sufficient peer-to-peer network will propagate the validation messages to other
validators. The validators will decide if another validator is reliable or not
only by its local observation of the validation messages received. So an honest
validator’s vote on another validator’s reliability is accurate.

	Given the votes are accurate, and one vote per validator, an honest validator
will not create a UNLModify transaction of a reliable validator.

	A validator can be added to a negative UNL only through a UNLModify
transaction.

Assuming the group of malicious validators is less than the quorum, they cannot
frame a reliable validator.

Summary

The bullet points below briefly summarize the current proposal:

	The motivation of the negative UNL is to improve the liveness of the network.

	The targeted faults are the ones frequently observed in the production
network.

	Validators propose negative UNL candidates based on their local measurements.

	The absolute minimum quorum is 60% of the original UNL.

	The format of the ledger is changed, and a new UNLModify pseudo-transaction
is added. Any tools or systems that rely on the format of these data will have
to be updated.

	The negative UNL can only be modified on the flag ledgers.

	At most one validator can be added to the negative UNL at a flag ledger.

	At most one validator can be removed from the negative UNL at a flag ledger.

	If a validator’s reliability status changes, it takes two flag ledgers to
modify the negative UNL.

	The quorum is the larger of 80% of the effective UNL and 60% of the original
UNL.

	If a validator is on the negative UNL, its validation messages are ignored
when the local node verifies if a ledger is fully validated.

FAQ

Question: What are UNLs?

Quote from the Technical FAQ [https://xrpl.org/technical-faq.html]: “They are
the lists of transaction validators a given participant believes will not
conspire to defraud them.”

Question: How does the negative UNL proposal affect network liveness?

The network can make forward progress when more than a quorum of the trusted
validators agree with the progress. The lower the quorum size is, the easier for
the network to progress. If the quorum is too low, however, the network is not
safe because nodes may have different results. So the quorum size used in the
consensus protocol is a balance between the safety and the liveness of the
network. The negative UNL reduces the size of the effective UNL, resulting in a
lower quorum size while keeping the network safe.

 Question: How does a validator get into the negative UNL? How is a
validator removed from the negative UNL?

A validator’s reliability is measured by other validators. If a validator
becomes unreliable, at a flag ledger, other validators propose UNLModify
pseudo-transactions which vote the validator to add to the negative UNL during
the consensus session. If agreed, the validator is added to the negative UNL at
the next flag ledger. The mechanism of removing a validator from the negative
UNL is the same.

Question: Given a negative UNL, what happens if the UNL changes?

Answer: Let’s consider the cases:

	A validator is added to the UNL, and it is already in the negative UNL. This
case could happen when not all the nodes have the same UNL. Note that the
negative UNL on the ledger lists unreliable nodes that are not necessarily the
validators for everyone.

In this case, the liveness is affected negatively. Because the minimum
quorum could be larger but the usable validators are not increased.

	A validator is removed from the UNL, and it is in the negative UNL.

In this case, the liveness is affected positively. Because the quorum could
be smaller but the usable validators are not reduced.

	A validator is added to the UNL, and it is not in the negative UNL.

	A validator is removed from the UNL, and it is not in the negative UNL.

Case 3 and 4 are not affected by the negative UNL protocol.

Question: Can we simply lower the quorum to 60% without the negative UNL?

Answer: No, because the negative UNL approach is safer.

First let’s compare the two approaches intuitively, (1) the negative UNL
approach, and (2) lower quorum: simply lowering the quorum from 80% to 60%
without the negative UNL. The negative UNL approach uses consensus to come up
with a list of unreliable validators, which are then removed from the effective
UNL temporarily. With this approach, the list of unreliable validators is agreed
to by a quorum of validators and will be used by every node in the network to
adjust its UNL. The quorum is always 80% of the effective UNL. The lower quorum
approach is a tradeoff between safety and liveness and against our principle of
preferring safety over liveness. Note that different validators don’t have to
agree on which validation sources they are ignoring.

Next we compare the two approaches quantitatively with examples, and apply
Theorem 8 of Analysis of the XRP Ledger Consensus
Protocol [https://arxiv.org/abs/1802.07242] paper:

XRP LCP guarantees fork safety if Oi,j > nj / 2 +
ni − qi + ti,j for every pair of nodes
Pi, Pj,

where Oi,j is the overlapping requirement, nj and
ni are UNL sizes, qi is the quorum size of Pi,
ti,j = min(ti, tj, Oi,j), and
ti and tj are the number of faults can be tolerated by
Pi and Pj.

We denote UNLi as Pi’s UNL, and |UNLi| as
the size of Pi’s UNL.

Assuming |UNLi| = |UNLj|, let’s consider the following
three cases:

	With 80% quorum and 20% faults, Oi,j > 100% / 2 + 100% - 80% +
20% = 90%. I.e. fork safety requires > 90% UNL overlaps. This is one of the
results in the analysis paper.

	If the quorum is 60%, the relationship between the overlapping requirement
and the faults that can be tolerated is Oi,j > 90% +
ti,j. Under the same overlapping condition (i.e. 90%), to guarantee
the fork safety, the network cannot tolerate any faults. So under the same
overlapping condition, if the quorum is simply lowered, the network can tolerate
fewer faults.

	With the negative UNL approach, we want to argue that the inequation
Oi,j > nj / 2 + ni − qi +
ti,j is always true to guarantee fork safety, while the negative UNL
protocol runs, i.e. the effective quorum is lowered without weakening the
network’s fault tolerance. To make the discussion easier, we rewrite the
inequation as Oi,j > nj / 2 + (ni −
qi) + min(ti, tj), where Oi,j is
dropped from the definition of ti,j because Oi,j >
min(ti, tj) always holds under the parameters we will
use. Assuming a validator V is added to the negative UNL, now let’s consider the
4 cases:

	V is not on UNLi nor UNLj

The inequation holds because none of the variables change.

	V is on UNLi but not on UNLj

The value of (ni − qi) is smaller. The value of
min(ti, tj) could be smaller too. Other
variables do not change. Overall, the left side of the inequation does
not change, but the right side is smaller. So the inequation holds.

	V is not on UNLi but on UNLj

The value of nj / 2 is smaller. The value of
min(ti, tj) could be smaller too. Other
variables do not change. Overall, the left side of the inequation does
not change, but the right side is smaller. So the inequation holds.

	V is on both UNLi and UNLj

The value of Oi,j is reduced by 1. The values of
nj / 2, (ni − qi), and
min(ti, tj) are reduced by 0.5, 0.2, and 1
respectively. The right side is reduced by 1.7. Overall, the left side
of the inequation is reduced by 1, and the right side is reduced by 1.7.
So the inequation holds.

The inequation holds for all the cases. So with the negative UNL approach,
the network’s fork safety is preserved, while the quorum is lowered that
increases the network’s liveness.

 Question: We have observed that occasionally a validator wanders off on its
own chain. How is this case handled by the negative UNL algorithm?

Answer: The case that a validator wanders off on its own chain can be measured
with the validations agreement. Because the validations by this validator must
be different from other validators’ validations of the same sequence numbers.
When there are enough disagreed validations, other validators will vote this
validator onto the negative UNL.

In general by measuring the agreement of validations, we also measured the
“sanity”. If two validators have too many disagreements, one of them could be
insane. When enough validators think a validator is insane, that validator is
put on the negative UNL.

 Question: Why would there be at most one disable UNLModify and one
re-enable UNLModify transaction per flag ledger?

Answer: It is a design choice so that the effective UNL does not change too
quickly. A typical targeted scenario is several validators go offline slowly
during a long weekend. The current design can handle this kind of cases well
without changing the effective UNL too quickly.

Appendix

Confidence Test

We will use two test networks, a single machine test network with multiple IP
addresses and the QE test network with multiple machines. The single machine
network will be used to test all the test cases and to debug. The QE network
will be used after that. We want to see the test cases still pass with real
network delay. A test case specifies:

	a UNL with different number of validators for different test cases,

	a network with zero or more non-validator nodes,

	a sequence of validator reliability change events (by killing/restarting
nodes, or by running modified rippled that does not send all validation
messages),

	the correct outcomes.

For all the test cases, the correct outcomes are verified by examining logs. We
will grep the log to see if the correct negative UNLs are generated, and whether
or not the network is making progress when it should be. The ripdtop tool will
be helpful for monitoring validators’ states and ledger progress. Some of the
timing parameters of rippled will be changed to have faster ledger time. Most if
not all test cases do not need client transactions.

For example, the test cases for the prototype:

	A 10-validator UNL.

	The network does not have other nodes.

	The validators will be started from the genesis. Once they start to produce
ledgers, we kill five validators, one every flag ledger interval. Then we
will restart them one by one.

	A sequence of events (or the lack of events) such as a killed validator is
added to the negative UNL.

Roads Not Taken: Test with Extended CSF

We considered testing with the current unit test framework, specifically the
Consensus Simulation
Framework [https://github.com/ripple/rippled/blob/develop/src/test/csf/README]
(CSF). However, the CSF currently can only test the generic consensus algorithm
as in the paper: Analysis of the XRP Ledger Consensus
Protocol [https://arxiv.org/abs/1802.07242].

Ledger Replay

LedgerReplayer is a new Stoppable for replaying ledgers.
Patterned after two other Stoppables under JobQueue—InboundLedgers
and InboundTransactions—it acts like a factory for creating
state-machine workers, and a network message demultiplexer for those workers.
Think of these workers like asynchronous functions.
Like functions, they each take a set of parameters.
The Stoppable memoizes these functions. It maintains a table for each
worker type, mapping sets of arguments to the worker currently working
on that argument set.
Whenever the Stoppable is asked to construct a worker, it first searches its
table to see if there is an existing worker with the same or overlapping
argument set.
If one exists, then it is used. If not, then a new one is created,
initialized, and added to the table.

For LedgerReplayer, there are three worker types: LedgerReplayTask,
SkipListAcquire, and LedgerDeltaAcquire.
Each is derived from TimeoutCounter to give it a timeout.
For LedgerReplayTask, the parameter set
is {reason, finish ledger ID, number of ledgers}. For SkipListAcquire and
LedgerDeltaAcquire, there is just one parameter: a ledger ID.

Each Stoppable has an entry point. For LedgerReplayer, it is replay.
replay creates two workers: a LedgerReplayTask and a SkipListAcquire.
LedgerDeltaAcquires are created in the callback for when the skip list
returns.

For SkipListAcquire and LedgerDeltaAcquire, initialization fires off the
underlying asynchronous network request and starts the timeout. The argument
set identifying the worker is included in the network request, and copied to
the network response. SkipListAcquire sends a request for a proof path for
the skip list of the desired ledger. LedgerDeltaAcquire sends a request for
the transaction set of the desired ledger.

LedgerReplayer is also a network message demultiplexer.
When a response arrives for a request that was sent by a SkipListAcquire or
LedgerDeltaAcquire worker, the Peer object knows to send it to the
LedgerReplayer, which looks up the worker waiting for that response based on
the identifying argument set included in the response.

LedgerReplayTask may ask InboundLedgers to send requests to acquire
the start ledger, but there is no way to attach a callback or be notified when
the InboundLedger worker completes. All the responses for its messages will
be directed to InboundLedgers, not LedgerReplayer. Instead,
LedgerReplayTask checks whether the start ledger has arrived every time its
timeout expires.

Like a promise, each worker keeps track of whether it is pending (!isDone())
or whether it has resolved successfully (complete_ == true) or unsuccessfully
(failed_ == true). It will never exist in both resolved states at once, nor
will it return to a pending state after reaching a resolved state.

Like promises, some workers can accept continuations to be called when they
reach a resolved state, or immediately if they are already resolved.
SkipListAcquire and LedgerDeltaAcquire both accept continuations of a type
specific to their payload, both via a method named addDataCallback(). Continuations
cannot be removed explicitly, but they are held by std::weak_ptr so they can
be removed implicitly.

LedgerReplayTask is simultaneously:

	an asynchronous function,

	a continuation to one SkipListAcquire asynchronous function,

	a continuation to zero or more LedgerDeltaAcquire asynchronous functions, and

	a continuation to its own timeout.

Each of these roles corresponds to different entry points:

	init()

	the callback added to SkipListAcquire, which calls updateSkipList(...) or cancel()

	the callback added to LedgerDeltaAcquire, which calls deltaReady(...) or cancel()

	onTimer()

Each of these entry points does something unique to that entry point. They
either (a) transition LedgerReplayTask to a terminal failed resolved state
(cancel() and onTimer()) or (b) try to make progress toward the successful
resolved state. init() and updateSkipList(...) call trigger() while
deltaReady(...) calls tryAdvance(). There’s a similarity between this
pattern and the way coroutines are implemented, where every yield saves the spot
in the code where it left off and every resume jumps back to that spot.

Sequence Diagram

[image: A successful ledger replay]Sequence diagram

Class Diagram

[image: Ledger replay classes]Class diagram

A crash course in CMake and Conan

To better understand how to use Conan,
we should first understand why we use Conan,
and to understand that,
we need to understand how we use CMake.

CMake

Technically, you don’t need CMake to build this project.
You could manually compile every translation unit into an object file,
using the right compiler options,
and then manually link all those objects together,
using the right linker options.
However, that is very tedious and error-prone,
which is why we lean on tools like CMake.

We have written CMake configuration files
(CMakeLists.txt and friends)
for this project so that CMake can be used to correctly compile and link
all of the translation units in it.
Or rather, CMake will generate files for a separate build system
(e.g. Make, Ninja, Visual Studio, Xcode, etc.)
that compile and link all of the translation units.
Even then, CMake has parameters, some of which are platform-specific.
In CMake’s parlance, parameters are specially-named variables like
[CMAKE_BUILD_TYPE][build_type] or
[CMAKE_MSVC_RUNTIME_LIBRARY][runtime].
Parameters include:

	what build system to generate files for

	where to find the compiler and linker

	where to find dependencies, e.g. libraries and headers

	how to link dependencies, e.g. any special compiler or linker flags that
need to be used with them, including preprocessor definitions

	how to compile translation units, e.g. with optimizations, debug symbols,
position-independent code, etc.

	on Windows, which runtime library to link with

For some of these parameters, like the build system and compiler,
CMake goes through a complicated search process to choose default values.
For others, like the dependencies,
we had written in the CMake configuration files of this project
our own complicated process to choose defaults.
For most developers, things “just worked”… until they didn’t, and then
you were left trying to debug one of these complicated processes, instead of
choosing and manually passing the parameter values yourself.

You can pass every parameter to CMake on the command line,
but writing out these parameters every time we want to configure CMake is
a pain.
Most humans prefer to put them into a configuration file, once, that
CMake can read every time it is configured.
For CMake, that file is a [toolchain file][toolchain].

Conan

These next few paragraphs on Conan are going to read much like the ones above
for CMake.

Technically, you don’t need Conan to build this project.
You could manually download, configure, build, and install all of the
dependencies yourself, and then pass all of the parameters necessary for
CMake to link to those dependencies.
To guarantee ABI compatibility, you must be sure to use the same set of
compiler and linker options for all dependencies and this project.
However, that is very tedious and error-prone, which is why we lean on tools
like Conan.

We have written a Conan configuration file (conanfile.py)
so that Conan can be used to correctly download, configure, build, and install
all of the dependencies for this project,
using a single set of compiler and linker options for all of them.
It generates files that contain almost all of the parameters that CMake
expects.
Those files include:

	A single toolchain file.

	For every dependency, a CMake [package configuration file][pcf],
[package version file][pvf], and for every build type, a package
targets file.
Together, these files implement version checking and define IMPORTED
targets for the dependencies.

The toolchain file itself amends the search path
([CMAKE_PREFIX_PATH][prefix_path]) so that [find_package()][find_package]
will [discover][search] the generated package configuration files.

Nearly all we must do to properly configure CMake is pass the toolchain
file.
What CMake parameters are left out?
You’ll still need to pick a build system generator,
and if you choose a single-configuration generator,
you’ll need to pass the CMAKE_BUILD_TYPE,
which should match the build_type setting you gave to Conan.

Even then, Conan has parameters, some of which are platform-specific.
In Conan’s parlance, parameters are either settings or options.
Settings are shared by all packages, e.g. the build type.
Options are specific to a given package, e.g. whether to build and link
OpenSSL as a shared library.

For settings, Conan goes through a complicated search process to choose
defaults.
For options, each package recipe defines its own defaults.

You can pass every parameter to Conan on the command line,
but it is more convenient to put them in a configuration file, once, that
Conan can read every time it is configured.
For Conan, that file is a [profile][profile].
All we must do to properly configure Conan is edit and pass the profile.
By default, Conan will use the profile named “default”.

 We recommend two different methods to depend on libxrpl in your own CMake [https://cmake.org/cmake/help/latest/]
project.
Both methods add a CMake library target named xrpl::libxrpl.

Conan requirement

The first method adds libxrpl as a Conan [https://docs.conan.io/] requirement.
With this method, there is no need for a Git submodule [https://git-scm.com/book/en/v2/Git-Tools-Submodules].
It is good for when you just need a dependency on libxrpl as-is.

This conanfile.txt is just an example.
[requires]
xrpl/1.10.0

[generators]
CMakeDeps
CMakeToolchain

If you want to depend on a version of libxrpl that is not in ConanCenter,
then you can export the recipe from the rippled project.
conan export <path>

Find and link the library in your CMake project.
find_package(xrpl)
target_link_libraries(<target> PUBLIC xrpl::libxrpl)

Download, build, and connect dependencies with Conan.
mkdir .build
cd .build
mkdir -p build/generators
conan install \
 --install-folder build/generators \
 --build missing \
 --settings build_type=Release \
 ..
cmake \
 -DCMAKE_TOOLCHAIN_FILE=build/generators/conan_toolchain.cmake \
 -DCMAKE_BUILD_TYPE=Release \
 ..
cmake --build . --parallel

CMake subdirectory

The second method adds the rippled [https://github.com/ripple/rippled] project as a CMake
subdirectory [https://cmake.org/cmake/help/latest/command/add_subdirectory.html].
This method works well when you keep the rippled project as a Git
submodule [https://git-scm.com/book/en/v2/Git-Tools-Submodules].
It’s good for when you want to make changes to libxrpl as part of your own
project.
Be careful, though.
Your project will inherit all of the same CMake options,
so watch out for name collisions.
We still recommend using Conan [https://docs.conan.io/] to download, build, and connect dependencies.

Add the project as a Git submodule.
mkdir submodules
git submodule add https://github.com/XRPLF/rippled.git submodules/rippled

Add and link the library in your CMake project.
add_subdirectory(submodules/rippled)
target_link_libraries(<target> PUBLIC xrpl::libxrpl)

Download, build, and connect dependencies with Conan.
mkdir .build
cd .build
conan install \
 --output-folder . \
 --build missing \
 --settings build_type=Release \
 ../submodules/rippled
cmake \
 -DCMAKE_TOOLCHAIN_FILE=build/generators/conan_toolchain.cmake \
 -DCMAKE_BUILD_TYPE=Release \
 ..
cmake --build . --parallel

 Our build instructions assume you have a C++ development
environment complete with Git, Python, Conan, CMake, and a C++ compiler.
This document exists to help readers set one up on any of the Big Three
platforms: Linux, macOS, or Windows.

Linux

Package ecosystems vary across Linux distributions,
so there is no one set of instructions that will work for every Linux user.
These instructions are written for Ubuntu 22.04.
They are largely copied from the script [https://github.com/thejohnfreeman/rippled-docker/blob/master/ubuntu-22.04/install.sh] used to configure our Docker
container for continuous integration.
That script handles many more responsibilities.
These instructions are just the bare minimum to build one configuration of
rippled.
You can check that codebase for other Linux distributions and versions.
If you cannot find yours there,
then we hope that these instructions can at least guide you in the right
direction.

apt update
apt install --yes curl git libssl-dev python3.10-dev python3-pip make g++-11

curl --location --remote-name \
 "https://github.com/Kitware/CMake/releases/download/v3.25.1/cmake-3.25.1.tar.gz"
tar -xzf cmake-3.25.1.tar.gz
rm cmake-3.25.1.tar.gz
cd cmake-3.25.1
./bootstrap --parallel=$(nproc)
make --jobs $(nproc)
make install
cd ..

pip3 install 'conan<2'

macOS

Open a Terminal and enter the below command to bring up a dialog to install
the command line developer tools.
Once it is finished, this command should return a version greater than the
minimum required (see BUILD.md).

clang --version

The command line developer tools should include Git too:

git --version

Install Homebrew [https://brew.sh/],
use it to install pyenv [https://github.com/pyenv/pyenv],
use it to install Python,
and use it to install Conan:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
brew update
brew install xz
brew install pyenv
pyenv install 3.10-dev
pyenv global 3.10-dev
eval "$(pyenv init -)"
pip install 'conan<2'

Install CMake with Homebrew too:

brew install cmake

 This document contains instructions for installing rippled.
The APT package manager is common on Debian-based Linux distributions like
Ubuntu,
while the YUM package manager is common on Red Hat-based Linux distributions
like CentOS.
Installing from source is an option for all platforms,
and the only supported option for installing custom builds.

From source

From a source build, you can install rippled and libxrpl using CMake’s
--install mode:

cmake --install . --prefix /opt/local

The default prefix [https://cmake.org/cmake/help/latest/variable/CMAKE_INSTALL_PREFIX.html] is typically /usr/local on Linux and macOS and
C:/Program Files/rippled on Windows.

With the APT package manager

	Update repositories:

 sudo apt update -y

	Install utilities:

 sudo apt install -y apt-transport-https ca-certificates wget gnupg

	Add Ripple’s package-signing GPG key to your list of trusted keys:

 sudo mkdir /usr/local/share/keyrings/
 wget -q -O - "https://repos.ripple.com/repos/api/gpg/key/public" | gpg --dearmor > ripple-key.gpg
 sudo mv ripple-key.gpg /usr/local/share/keyrings

	Check the fingerprint of the newly-added key:

 gpg /usr/local/share/keyrings/ripple-key.gpg

The output should include an entry for Ripple such as the following:

 gpg: WARNING: no command supplied. Trying to guess what you mean ...
 pub rsa3072 2019-02-14 [SC] [expires: 2026-02-17]
 C0010EC205B35A3310DC90DE395F97FFCCAFD9A2
 uid TechOps Team at Ripple <techops+rippled@ripple.com>
 sub rsa3072 2019-02-14 [E] [expires: 2026-02-17]

In particular, make sure that the fingerprint matches. (In the above example, the fingerprint is on the third line, starting with C001.)

	Add the appropriate Ripple repository for your operating system version:

 echo "deb [signed-by=/usr/local/share/keyrings/ripple-key.gpg] https://repos.ripple.com/repos/rippled-deb focal stable" | \
 sudo tee -a /etc/apt/sources.list.d/ripple.list

The above example is appropriate for Ubuntu 20.04 Focal Fossa. For other operating systems, replace the word focal with one of the following:

	jammy for Ubuntu 22.04 Jammy Jellyfish

	bionic for Ubuntu 18.04 Bionic Beaver

	bullseye for Debian 11 Bullseye

	buster for Debian 10 Buster

If you want access to development or pre-release versions of rippled, use one of the following instead of stable:

	unstable - Pre-release builds (release branch [https://github.com/ripple/rippled/tree/release])

	nightly - Experimental/development builds (develop branch [https://github.com/ripple/rippled/tree/develop])

Warning: Unstable and nightly builds may be broken at any time. Do not use these builds for production servers.

	Fetch the Ripple repository.

 sudo apt -y update

	Install the rippled software package:

 sudo apt -y install rippled

	Check the status of the rippled service:

 systemctl status rippled.service

The rippled service should start automatically. If not, you can start it manually:

 sudo systemctl start rippled.service

	Optional: allow rippled to bind to privileged ports.

This allows you to serve incoming API requests on port 80 or 443. (If you want to do so, you must also update the config file’s port settings.)

 sudo setcap 'cap_net_bind_service=+ep' /opt/ripple/bin/rippled

With the YUM package manager

	Install the Ripple RPM repository:

Choose the appropriate RPM repository for the stability of releases you want:

	stable for the latest production release (master branch)

	unstable for pre-release builds (release branch)

	nightly for experimental/development builds (develop branch)

Stable

 cat << REPOFILE | sudo tee /etc/yum.repos.d/ripple.repo
 [ripple-stable]
 name=XRP Ledger Packages
 enabled=1
 gpgcheck=0
 repo_gpgcheck=1
 baseurl=https://repos.ripple.com/repos/rippled-rpm/stable/
 gpgkey=https://repos.ripple.com/repos/rippled-rpm/stable/repodata/repomd.xml.key
 REPOFILE

Unstable

 cat << REPOFILE | sudo tee /etc/yum.repos.d/ripple.repo
 [ripple-unstable]
 name=XRP Ledger Packages
 enabled=1
 gpgcheck=0
 repo_gpgcheck=1
 baseurl=https://repos.ripple.com/repos/rippled-rpm/unstable/
 gpgkey=https://repos.ripple.com/repos/rippled-rpm/unstable/repodata/repomd.xml.key
 REPOFILE

Nightly

 cat << REPOFILE | sudo tee /etc/yum.repos.d/ripple.repo
 [ripple-nightly]
 name=XRP Ledger Packages
 enabled=1
 gpgcheck=0
 repo_gpgcheck=1
 baseurl=https://repos.ripple.com/repos/rippled-rpm/nightly/
 gpgkey=https://repos.ripple.com/repos/rippled-rpm/nightly/repodata/repomd.xml.key
 REPOFILE

	Fetch the latest repo updates:

 sudo yum -y update

	Install the new rippled package:

 sudo yum install -y rippled

	Configure the rippled service to start on boot:

 sudo systemctl enable rippled.service

	Start the rippled service:

 sudo systemctl start rippled.service

 _static/up.png

_images/consensus_modes.png

_images/consensus_overview.png
Timerenty Timerenty Timereny
—— —— ——

Timereoty Timereoty f——

[(A T T (A T]

— EndRound

Open ——Closo—pn Esiabish —Consensus—- Accopt

s 200 BB ADA A A AA

_images/EffCloseTime.png
i |

Resolution. > Resolution:

_images/block_chain.png
Lodger0

Lodger 1

Lodger2

_images/threshold.png
Teshold

_static/ajax-loader.gif

_images/disputes.png
<\ (@
<)l
Q@ | <<
fae)§ <

_images/ledger_chain.png

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

